If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 300 = 0.0089t2 + 1.1149t + 78.4491 Reorder the terms: 300 = 78.4491 + 1.1149t + 0.0089t2 Solving 300 = 78.4491 + 1.1149t + 0.0089t2 Solving for variable 't'. Combine like terms: 300 + -78.4491 = 221.5509 221.5509 + -1.1149t + -0.0089t2 = 78.4491 + 1.1149t + 0.0089t2 + -78.4491 + -1.1149t + -0.0089t2 Reorder the terms: 221.5509 + -1.1149t + -0.0089t2 = 78.4491 + -78.4491 + 1.1149t + -1.1149t + 0.0089t2 + -0.0089t2 Combine like terms: 78.4491 + -78.4491 = 0.0000 221.5509 + -1.1149t + -0.0089t2 = 0.0000 + 1.1149t + -1.1149t + 0.0089t2 + -0.0089t2 221.5509 + -1.1149t + -0.0089t2 = 1.1149t + -1.1149t + 0.0089t2 + -0.0089t2 Combine like terms: 1.1149t + -1.1149t = 0.0000 221.5509 + -1.1149t + -0.0089t2 = 0.0000 + 0.0089t2 + -0.0089t2 221.5509 + -1.1149t + -0.0089t2 = 0.0089t2 + -0.0089t2 Combine like terms: 0.0089t2 + -0.0089t2 = 0.0000 221.5509 + -1.1149t + -0.0089t2 = 0.0000 Begin completing the square. Divide all terms by -0.0089 the coefficient of the squared term: Divide each side by '-0.0089'. -24893.35955 + 125.2696629t + t2 = 0 Move the constant term to the right: Add '24893.35955' to each side of the equation. -24893.35955 + 125.2696629t + 24893.35955 + t2 = 0 + 24893.35955 Reorder the terms: -24893.35955 + 24893.35955 + 125.2696629t + t2 = 0 + 24893.35955 Combine like terms: -24893.35955 + 24893.35955 = 0.00000 0.00000 + 125.2696629t + t2 = 0 + 24893.35955 125.2696629t + t2 = 0 + 24893.35955 Combine like terms: 0 + 24893.35955 = 24893.35955 125.2696629t + t2 = 24893.35955 The t term is 125.2696629t. Take half its coefficient (62.63483145). Square it (3923.122111) and add it to both sides. Add '3923.122111' to each side of the equation. 125.2696629t + 3923.122111 + t2 = 24893.35955 + 3923.122111 Reorder the terms: 3923.122111 + 125.2696629t + t2 = 24893.35955 + 3923.122111 Combine like terms: 24893.35955 + 3923.122111 = 28816.481661 3923.122111 + 125.2696629t + t2 = 28816.481661 Factor a perfect square on the left side: (t + 62.63483145)(t + 62.63483145) = 28816.481661 Calculate the square root of the right side: 169.754180099 Break this problem into two subproblems by setting (t + 62.63483145) equal to 169.754180099 and -169.754180099.Subproblem 1
t + 62.63483145 = 169.754180099 Simplifying t + 62.63483145 = 169.754180099 Reorder the terms: 62.63483145 + t = 169.754180099 Solving 62.63483145 + t = 169.754180099 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-62.63483145' to each side of the equation. 62.63483145 + -62.63483145 + t = 169.754180099 + -62.63483145 Combine like terms: 62.63483145 + -62.63483145 = 0.00000000 0.00000000 + t = 169.754180099 + -62.63483145 t = 169.754180099 + -62.63483145 Combine like terms: 169.754180099 + -62.63483145 = 107.119348649 t = 107.119348649 Simplifying t = 107.119348649Subproblem 2
t + 62.63483145 = -169.754180099 Simplifying t + 62.63483145 = -169.754180099 Reorder the terms: 62.63483145 + t = -169.754180099 Solving 62.63483145 + t = -169.754180099 Solving for variable 't'. Move all terms containing t to the left, all other terms to the right. Add '-62.63483145' to each side of the equation. 62.63483145 + -62.63483145 + t = -169.754180099 + -62.63483145 Combine like terms: 62.63483145 + -62.63483145 = 0.00000000 0.00000000 + t = -169.754180099 + -62.63483145 t = -169.754180099 + -62.63483145 Combine like terms: -169.754180099 + -62.63483145 = -232.389011549 t = -232.389011549 Simplifying t = -232.389011549Solution
The solution to the problem is based on the solutions from the subproblems. t = {107.119348649, -232.389011549}
| X=7246.376812+-11.5942029x | | x=180-y | | -99-12x=71-2x | | -2x-21=-4x+27 | | 5y-3=3y+3 | | -5+8(x-4)=15x+3-7x | | X2-9/16=0 | | -45-2x=18-5x | | 34-4x=20+3x | | 2(x+3)-4(x-1)=0 | | -p+8=-7 | | 200x=250x | | (36x^3)/(3x^4) | | 7x-5=-49 | | 2lnx-6=20 | | 9m-3(m+6)=2m+1 | | x-2+x-2=180 | | -2-.25w=-5 | | -12x-131=58-3x | | 3x-2/5=7x-1/4 | | 5/x+1=-4 | | 7(2x-2)-5x=3x+6 | | y=11+x | | 36x^3/3x^4 | | x+X(.08625)=625 | | (x-7/5)=1-(x/7) | | x+x-2=180 | | 2b+8=48 | | 2.1x=8.7 | | -43-4x=11-7x | | x-7+x-8=180 | | 4x/5a=c |